COREGAL: Exploring Galileo E5 Reflected Signals for Biomass Applications

September 2016 Project Technical Presentation - First GNSS-R Results

2. System Architecture

3. Tests

4. Conclusions

1

Context and Motivation

Why measuring biomass is important?

- Forests cover 30% of land surface and are a key socioeconomic element
- It is important to understand ecological and biogeochemical processes, such as Carbon Modeling
 - Enabling Climate Research, Sustainable Forest Management and Enhancement of Forest Carbon Stocks

How is biomass measured today?

- Spaceborne remote sensing and in-situ measurements are the most common sources of observables
- Aboveground Biomass (AGB) is a key indicator, but monitoring AGB is difficult and expensive to maintain
 - In-situ measures are very accurate but cover small areas
 - Spaceborne remote sensing covers very large areas, but lacks spatial precision required for large AGB estimates

Context and Motivation [cont'd]

How can COREGAL System help?

- Aims to provides an attractive biomass measurement solution using GNSS-R technique and small unmanned aircraft system (sUAS)
- A first of its kind combined Position+Reflectometry (P+R) Galileo E1 and E5a+b receiver is developed as the main sensor for positioning and biomass estimation
- Combines local precise measurements (retrieved with GNSS-R using a sUAS) with spaceborne measurements, to provide high-accuracy biomass maps
- sUAS mission cost is an order of magnitude lower than manned mission

Context and Motivation

GNSS-R for Biomass measurement

- GNSS signals propagate through tree canopies, branches and leafs and acquire biomass which is later retrieved
- GNSS L-band signals are sensitive to the above ground biomass

Context and Motivation [cont'd]

• What are COREGAL Objectives?

- Study of Mediterranean ecosystems forests (Portuguese case study) and Brazil forests
- Combine Galileo AltBOC E5 signals with Galileo E1 to enable high positioning accuracy
- Use sUAS with a GNSS-R receiver and a passive optical multispectral imager for AGB mapping and estimation
- GNSS-R signal properties with lower saturation in signal backscattering when compared to RADAR
- Demonstrate the concept as part of a commercial service, with cost reductions and high-accuracy biomass mapping, accelerating Galileo adoption in Brazil
- This presentation presents the COREGAL system and first results of the COREGAL project.

COREGAL System Architecture

COREGAL-DME-COM-PRE10-10-E

ION GNSS+ 2016 © ELECNOR DEIMOS

System Architecture

On-Board Instrument

- o Antennas
- GNSS-P+R Receiver
- Optical Camera and IMU

On-Ground Post Processing

- Image and Positioning Processing;
- GNSS-R Post-Post
 Processing
- GNSS-R Based Biomass
 Data Extraction
- Biomass Data Extraction
- Carbon Stock Estimation

System Architecture

GNSS-P+R Receiver and Antennas

• 2 Multi-Frequency GNSS Antennas

- RHCP antenna for direct signal
- LHCP antenna for reflected signal

Radio Frequency Front End

- *RF signal processing, down-conversion, ADC, supporting all GNSS bands*
- 4 RF FE channels

Digital Signal Processing

- Xilinx Zynq-7000 (ARM+FPGA) based
- Carrier and code de-spreading, tracking loop closure, PVT estimation and GNSS-R observables generation
- 44 GNSS hardware channels
- BPSK, BOC, MBOC and AltBOC

System Architecture

On-Ground Post Processing

- GNSS-R post-processing, responsible for the post processing of raw GNSS data output by the onboard instrumentation.
- Image and position processing, responsible for precise PVAT estimation
- Biomass processing, comprised of the following:
 - Biomass data extraction, responsible for the retrieval of AGB estimation from satellite and sUAS data; the two sources shall be combined to generate more precise biomass estimates
 - Carbon stock estimation, responsible for the estimation of carbon pools and fluxes, based on AGB estimation techniques

Tests

Test Trials Setup

- GNSS-R tests using USR RF FE
- Static and dynamic tests conducted over the past months
- Dynamic tests onboard UAVision quadcopter near Coruche, Portugal
 - Where ground control biomass references are available

Tests

Test Trials Setup [cont'd]

- Test Procedure
 - Data Acquisition
 - Uplooking RHCP antenna pointed towards the sky
 - Downlooking LHCP antenna pointed towards the expected specular reflection point
 - Digital outputs (samples for direct and reflected signals) are recorded
 - Data Processing
 - Digital recorded samples post-processed to detect presence of direct and reflected signals
 - Carrier-to-noise ratio, C/N₀, and the reflected signal attenuation is estimated

Test Trials Setup [cont'd]

• **RF FE configuration**

Sampling frequency	20 MHz
Digital bandwidth	20 MHz
Local carrier	1176.45 MHz
Acquisition length	60 s
Quantization level	16 bits
Coherent integration time	1 ms
Number of non-coherent combinations	200

• RF Setup

Test Trials Setup Tuning

• E5 RF spectrum polluted with unwanted RF signals

- DME signal was also received
 - Test trials conducted near Lisbon International Airport
- Potential weaker SNR

Test Trials Setup Tuning [cont'd]

- DME signal can be described as a train of paired pulses (amplitude spikes)
- DME interference mitigation was performed by removing the amplitude spikes in time-domain (applying pulseblanking)

Tests

Test Trials Setup Tuning [cont'd]

E5a power spectral density after pulse blanking

- DME interference mitigation:
 - Pulse-blanking technique signal amplitude set to zero when a DME pulse is detected
 - *Previous visible frequencies spurious are now either not visible or atenuated*

Test Results [cont'd]

- *C*/*N*⁰ for the direct and reflected signals was estimated for three sequential acquisitions
- 60 sec length using Galileo E5a SVID 26
- Acquisitions start at 0, 95 and 195 sec
 - Reflected signal not detected at certain time epochs in the third acquisition

Test Results [cont'd]

- Estimated reflected signal reflectivity
 - Average reflectivity of -14 dB, corresponding to dry and rough soil covered with low vegetation
 - A slight decreasing trend is visible, most likely due to elevation changes and specular pointing movement

Conclusions

Conclusions

Conclusions

- Presented a high-level view of the COREGAL system architecture
- Development of GNSS-P+R receiver targeting high accurate position estimates and GNSS-R
 - New receiver motherboard compatible with all known civilian or open-service GNSS signal
- First prototype is being tested
 - First COREGAL test campaigns started in June 2016 and will continue to take place over the next few months
 - GNSS signals reflected over vegetation have been collected to generate GNSS-R raw data to early test the COREGAL concept
- Presented GNSS-R raw data obtained
 - Correlation outputs and reflected signal reflectivity

ACKNOWLEDGMENTS

ACKNOWLEDGMENTS:

- This work has been conducted within the COREGAL project. This project has received funding from European Community's Horizon 2020 Programme (Grant Agreement n^o 641585) under the coordination of the Galileo Supervisory Authority (GSA).
- Authors would also like to thank:
 - Nuno Simões from UAVision;
 - Sofia Cerasoli from Instituto Superior de Agronomia;
 - Tiago Mendes from DEIMOS Engenharia;
 - Owners of Herdade da Machuqueira do Grou.

Questions?

(tiago.peres@elecnor.es)

Thank you for your attention

COREGAL-DME-COM-PRE10-10-E

ION GNSS+ 2016 © ELECNOR DEIMOS